Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Jun 10;280(23):22297-307. Epub 2005 Apr 6.

Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic beta-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression.

Author information

  • 1Department of Cellular and Physiological Sciences, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada.


The hormone glucose-dependent insulinotropic polypeptide (GIP) potently stimulates insulin secretion and promotes beta-cell proliferation and cell survival. In the present study we identified Forkhead (Foxo1)-mediated suppression of the bax gene as a critical component of the effects of GIP on cell survival. Treatment of INS-1(832/13) beta-cells with GIP resulted in concentration-dependent activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB)/Foxo1 signaling module. In parallel studies, GIP decreased bax promoter activity. Serial deletion analysis of the bax promoter demonstrated that the region -682 to -320, containing FHRE-II (5AAAACAAACA), was responsible for GIP-mediated effects. Foxo1 bound to FHRE-II in gel mobility shift assays, and Foxo1-FHRE-II interactions conferred GIP responsiveness to the bax promoter. INS-1 cells incubated under proapoptotic and glucolipotoxic conditions demonstrated increased nuclear localization of Foxo1 and bax promoter activity and decreased cytoplasmic phospho-PKB/Foxo1. GIP partially restored expression PKB/Foxo1 and bax promoter activity. Similar protective effects were found with dispersed islet cells from C57BL/6 mice, but not with those from GIP receptor knock-out (GIPR(-/-)) mice. GIP treatment reduced glucolipotoxicity-induced cell death in C57 BL/6 and Bax(-/-) islets, but not GIPR(-/-) mouse islets. Chronic treatment of Vancouver diabetic fatty Zucker rats with GIP resulted in down-regulation of Bax and up-regulation of Bcl-2 in pancreatic beta-cells. The results show that PI3K/PKB/Foxo1 signaling mediates GIP suppression of bax gene expression and that this module is a key pathway by which GIP regulates beta-cell apoptosis in vivo.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk