Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Development. 2005 Apr;132(8):1923-34.

Analysis of xbx genes in C. elegans.

Author information

  • 1Karolinska Institute, Department of Biosciences and Södertörn University College, Section of Natural Sciences, S-14189 Huddinge, Sweden.

Abstract

Cilia and flagella are widespread eukaryotic subcellular components that are conserved from green algae to mammals. In different organisms they function in cell motility, movement of extracellular fluids and sensory reception. While the function and structural description of cilia and flagella are well established, there are many questions that remain unanswered. In particular, very little is known about the developmental mechanisms by which cilia are generated and shaped and how their components are assembled into functional machineries. To find genes involved in cilia development we used as a search tool a promoter motif, the X-box, which participates in the regulation of certain ciliary genes in the nematode Caenorhabditis elegans. By using a genome search approach for X-box promoter motif-containing genes (xbx genes) we identified a list of about 750 xbx genes (candidates). This list comprises some already known ciliary genes as well as new genes, many of which we hypothesize to be important for cilium structure and function. We derived a C. elegans X-box consensus sequence by in vivo expression analysis. We found that xbx gene expression patterns were dependent on particular X-box nucleotide compositions and the distance from the respective gene start. We propose a model where DAF-19, the RFX-type transcription factor binding to the X-box, is responsible for the development of a ciliary module in C. elegans, which includes genes for cilium structure, transport machinery, receptors and other factors.

PMID:
15790967
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk