Send to:

Choose Destination
See comment in PubMed Commons below
J Am Soc Nephrol. 2005 May;16(5):1384-91. Epub 2005 Mar 23.

Role of mammalian target of rapamycin signaling in compensatory renal hypertrophy.

Author information

  • 1Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, S 3223 Medical Center North, Nashville, Tennessee 37232, USA.


Loss of functioning nephrons stimulates the growth of residual kidney tissue to augment work capacity and maintain normal renal function. This growth largely occurs by hypertrophy rather than from hyperplasia of the remaining nephrons. The signaling mechanisms that increase RNA and protein synthesis during compensatory renal hypertrophy are unknown. This study found that the remaining kidney hypertrophied 42% by 16 d after unilateral nephrectomy (UNX) in DBA/2 mice. Immunoblotting analysis revealed increased phosphorylation of the 40S ribosomal protein S6 (rpS6) and the eukaryotic translation initiation factor (eIF) 4E-binding protein 1 (4E-BP1), the two downstream effectors of the mammalian target of rapamycin (mTOR). The highly specific mTOR inhibitor rapamycin blocked UNX-increased phosphorylation of both rpS6 and 4E-BP1. UNX increased the content of not only 40S and 60S ribosomal subunits but also 80S monosomes and polysomes in the remaining kidney. Administration of rapamycin decreased UNX-induced polysome formation and shifted the polysome profile in the direction of monosomes and ribosomal subunits. Pretreatment of the mice with rapamycin inhibited UNX-induced hypertrophy. These studies demonstrate that activation of the mTOR signaling pathway in the remaining kidney after UNX plays an essential role in modulating RNA and protein synthesis during development of compensatory renal hypertrophy.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk