Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Infect Immun. 2005 Apr;73(4):2367-78.

Involvement of the Escherichia coli O157:H7(pO157) ecf operon and lipid A myristoyl transferase activity in bacterial survival in the bovine gastrointestinal tract and bacterial persistence in farm water troughs.

Author information

  • 1Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA.


Escherichia coli O157:H7 is an important food-borne pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome in humans. Recently, we reported that the pO157 ecf (E. coli attaching and effacing gene-positive conserved fragments) operon is thermoregulated by an intrinsically curved DNA and contains the genes for bacterial surface-associated proteins, including a second copy of lipid A myristoyl transferase, whose chromosomal copy is the lpxM gene product. E. coli O157:H7 survives and persists well in diverse environments from the human and bovine gastrointestinal tracts (GIT) to nutrient-dilute farm water troughs. Transcriptional regulation of the ecf operon by intrinsic DNA curvature and the genetic redundancy of lpxM that is associated with lipid A modification led us to hypothesize that the pO157 ecf operon and lpxM are associated with bacterial survival and persistence in various in vivo and ex vivo environments by optimizing bacterial membrane structure and/or integrity. To test this hypothesis, three isogenic ecf operon and/or lpxM deletion mutants of E. coli O157:H7 ATCC 43894 were constructed and analyzed in vitro and in vivo. The results showed that a double mutant carrying deletions in the ecf and lpxM genes had an altered lipid A structure and membrane fatty acid composition, did not survive passage through the bovine GIT, did not persist well in farm water troughs, had increased susceptibility to a broad spectrum of antibiotics and detergents, and had impaired motility. Electron microscopic analyses showed gross changes in bacterial membrane structure.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (8)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk