Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Gastrointest Liver Physiol. 2005 Aug;289(2):G188-96. Epub 2005 Mar 17.

Development of a three-dimensional physiological model of the internal anal sphincter bioengineered in vitro from isolated smooth muscle cells.

Author information

  • 1Division of Pediatric Gastroenterology, University of Michigan Medical School, 1150 West Medical Center Dr., MSRB 1, Rm. A520, Ann Arbor, MI 48109-0656, USA.

Abstract

Fecal incontinence affects people of all ages and social backgrounds and can have devastating psychological and economic consequences. This disorder is largely attributed to decreased mechanical efficiency of the internal anal sphincter (IAS), yet little is known about the pathophysiological mechanisms responsible for the malfunction of sphincteric smooth muscle at the cellular level. The object of this study was to develop a three-dimensional (3-D) physiological model of the IAS bioengineered in vitro from isolated smooth muscle cells. Smooth muscle cells isolated from the IAS of rabbits were seeded in culture on top of a loose fibrin gel, where they migrated and self-assembled in circumferential alignment. As the cells proliferated, the fibrin gel contracted around a 5-mm-diameter SYLGARD mold, resulting in a 3-D cylindrical ring of sphincteric tissue. We found that 1) the bioengineered IAS rings generated a spontaneous basal tone, 2) stimulation with 8-bromo-cAMP (8-Br-cAMP) caused a sustained decrease in the basal tone (relaxation) that was calcium-independent, 3) upon stimulation with ACh, bioengineered IAS rings showed a calcium- and concentration-dependent peak contraction at 30 s that was sustained for 4 min, 4) addition of 8-Br-cAMP induced rapid relaxation of ACh-induced contraction and force generation of IAS rings, and 5) bioengineered sphincter rings show striking functional differences when compared with bioengineered rings made from isolated colonic smooth muscle cells. This is the first report of a 3-D in vitro model of a gastrointestinal smooth muscle IAS. Bioengineered IAS rings demonstrate physiological functionality and may be used in the elucidation of the mechanisms causing sphincter malfunction.

PMID:
15774939
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk