Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below

Regenerative biology and medicine.

Author information

  • Department of Biology and Center for Regenerative Biology and Medicine School of Science, Indiana University-Purdue University at Indianapolis, 46202, USA. dstocum@iupui.edu


The replacement of damaged tissues and organs with tissue and organ transplants or bionic implants has serious drawbacks. There is now emerging a new approach to tissue and organ replacement, regenerative biology and medicine. Regenerative biology seeks to understand the cellular and molecular differences between regenerating and non-regenerating tissues. Regenerative medicine seeks to apply this understanding to restore tissue structure and function in damaged, non-regenerating tissues. Regeneration is accomplished by three mechanisms, each of which uses or produces a different kind of regeneration-competent cell. Compensatory hyperplasia is regeneration by the proliferation of cells which maintain all or most of their differentiated functions (e.g., liver). The urodele amphibians regenerate a variety of tissues by the dedifferentiation of mature cells to produce progenitor cells capable of division. Many tissues contain reserve stem or progenitor cells that are activated by injury to restore the tissue while simultaneously renewing themselves. All regeneration-competent cells have two features in common. First, they are not terminally differentiated and can re-enter the cell cycle in response to signals in the injury environment. Second, their activation is invariably accompanied by the dissolution of the extracellular matrix (ECM) surrounding the cells, suggesting that the ECM is an important regulator of their state of differentiation. Regenerative medicine uses three approaches. First is the transplantation of cells into the damaged area. Second is the construction of bioartificial tissues by seeding cells into a biodegradable scaffold where they produce a normal matrix. Third is the use of a biomaterial scaffold or drug delivery system to stimulate regeneration in vivo from regeneration-competent cells. There is substantial evidence that non-regenerating mammalian tissues harbor regeneration-competent cells that are forced into a pathway of scar tissue formation. Regeneration can be induced if the factors leading to scar formation are inhibited and the appropriate signaling environment is supplied. An overview of regenerative mechanisms, approaches of regenerative medicine, research directions, and research issues will be given.

Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for International Society of Musculoskeletal and Neuronal Interactions
    Loading ...
    Write to the Help Desk