Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochem Biophys Res Commun. 2005 Apr 15;329(3):1046-52.

PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector.

Author information

  • 1Division of Cell Biology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan.

Abstract

Rap2 belongs to the Ras family of small GTP-binding proteins, but its specific signaling role is unclear. By yeast two-hybrid screening, we have found that the Caenorhabditis elegans ortholog of Rap2 interacts with a protein containing a Rho-GTPase-activating protein (RhoGAP) domain, ZK669.1a, whose human ortholog PARG1 exhibits RhoGAP activity in vitro. ZK669.1a and PARG1 share a homology region with previously unknown function, designated the ZK669.1a and PARG1 homology (ZPH) region. Here we show that the ZPH region of PARG1 mediates interaction with Rap2. PARG1 interacted with Rap2 in a GTP-dependent manner but not with Ras or Rap1. We also show that PARG1 and its mutant lacking the ZPH region induce typical cytoskeletal changes for Rho inactivation in fibroblasts. Rap2 suppressed this in vivo action of PARG1 but not that of the mutant PARG1. These results suggest that PARG1 is a putative specific effector of Rap2 to regulate Rho.

PMID:
15752761
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk