Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Death Differ. 2005 May;12(5):482-91.

Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells.

Author information

  • 1Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.

Abstract

In LNCaP prostate cancer cells CG-1521, a new inhibitor of histone deacetylases, alters the acetylation of p53 in a site-specific manner. While p53 is constitutively acetylated at Lys320 in LNCaP cells, treatment with CG-1521, stabilizes the acetylation of p53 at Lys373, elevating p21 (and inducing cell cycle arrest). Treatment with CG-1521 also promotes Bax translocation to the mitochondria and cleavage, and apoptosis. TSA stabilizes the acetylation of p53 at Lys382, elevating p21 levels and inducing cell cycle arrest, but does not induce Bax translocation or apoptosis. In LNCaP cells CG-1521, but not TSA, promotes the rapid degradation of HDAC2. These data suggest that the acetylation of p53 at Lys373 is required for the p53-mediated induction of cell cycle arrest and apoptosis, while acetylation of p53 at Lys382 induces only cell cycle arrest. In p53(-/-) PC3 cells both compounds induce p21 and cell cycle arrest, but not Bax translocation or apoptosis, suggesting that both compounds can also induce p21 through a p53-independent mechanism.

PMID:
15746940
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk