Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Nature. 2005 Mar 3;434(7029):104-8.

Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates.

Author information

  • 1Department of Physiology, University of California, San Francisco, California 94143-2200, USA.

Abstract

Cell-cycle events are controlled by cyclin-dependent kinases (CDKs), whose periodic activation is driven by cyclins. Different cyclins promote distinct cell-cycle events, but the molecular basis for these differences remains unclear. Here we compare the specificity of two budding yeast cyclins, the S-phase cyclin Clb5 and the M-phase cyclin Clb2, in the phosphorylation of 150 Cdk1 (Cdc28) substrates. About 24% of these proteins were phosphorylated more efficiently by Clb5-Cdk1 than Clb2-Cdk1. The Clb5-specific targets include several proteins (Sld2, Cdc6, Orc6, Mcm3 and Cdh1) involved in early S-phase events. Clb5 specificity depended on an interaction between a hydrophobic patch in Clb5 and a short sequence in the substrate (the RXL or Cy motif). Phosphorylation of Clb5-specific targets during S phase was reduced by replacing Clb5 with Clb2 or by mutating the substrate RXL motif, confirming the importance of Clb5 specificity in vivo. Although we did not identify any highly Clb2-specific substrates, we found that Clb2-Cdk1 possessed higher intrinsic kinase activity than Clb5-Cdk1, enabling efficient phosphorylation of a broad range of mitotic Cdk1 targets. Thus, Clb5 and Clb2 use distinct mechanisms to enhance the phosphorylation of S-phase and M-phase substrates.

Comment in

PMID:
15744308
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk