Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Vitam Nutr Res. 2004 Nov;74(6):403-19.

Enhancers of iron absorption: ascorbic acid and other organic acids.

Author information

  • 1Nutrition Division, Institute of Food Research, Norwich NR4 7UA, UK. birgit.teucher@bbsrc.ac.uk

Abstract

Ascorbic acid (AA), with its reducing and chelating properties, is the most efficient enhancer of non-heme iron absorption when its stability in the food vehicle is ensured. The number of studies investigating the effect of AA on ferrous sulfate absorption far outweighs that of other iron fortificants. The promotion of iron absorption in the presence of AA is more pronounced in meals containing inhibitors of iron absorption. Meals containing low to medium levels of inhibitors require the addition of AA at a molar ratio of 2:1 (e.g., 20 mg AA: 3 mg iron). To promote absorption in the presence of high levels of inhibitors, AA needs to be added at a molar ratio in excess of 4:1, which may be impractical. The effectiveness of AA in promoting absorption from less soluble compounds, such as ferrous fumarate and elemental iron, requires further investigation. The instability of AA during food processing, storage, and cooking, and the possibility of unwanted sensory changes limits the number of suitable food vehicles for AA, whether used as vitamin fortificant or as an iron enhancer. Suitable vehicles include dry-blended foods, such as complementary, precooked cereal-based infant foods, powdered milk, and other dry beverage products made for reconstitution that are packaged, stored, and prepared in a way that maximizes retention of this vitamin. The consumption of natural sources of Vitamin C (fruits and vegetables) with iron-fortified dry blended foods is also recommended. Encapsulation can mitigate some of the AA losses during processing and storage, but these interventions will also add cost. In addition, the bioavailability of encapsulated iron in the presence/absence of AA will need careful assessment in human clinical trials. The long-term effect of high AA intake on iron status may be less than predicted from single meal studies. The hypothesis that an overall increase of dietary AA intake, or fortification of some foods commonly consumed with the main meal with AA alone, may be as effective as the fortification of the same food vehicle with AA and iron, merits further investigation. This must involve the consideration of practicalities of implementation. To date, programs based on iron and AA fortification of infant formulas and cow's milk provide the strongest evidence for the efficacy of AA fortification. Present results suggest that the effect of organic acids, as measured by in vitro and in vivo methods, is dependent on the source of iron, the type and concentration of organic acid, pH, processing methods, and the food matrix. The iron absorption-enhancing effect of AA is more potent than that of other organic acids due to its ability to reduce ferric to ferrous iron. Based on the limited data available, other organic acids may only be effective at ratios of acid to iron in excess of 100 molar. This would translate into the minimum presence/addition of 1 g citric acid to a meal containing 3 mg iron. Further characterization of the effectiveness of various organic acids in promoting iron absorption is required, in particular with respect to the optimal molar ratio of organic acid to iron, and associated feasibility for food application purposes. The suggested amount of any organic acid required to produce a nutritional benefit will result in unwanted organoleptic changes in most foods, thus limiting its application to a small number of food vehicles (e.g., condiments, beverages). However, fermented foods that already contain high levels of organic acid may be suitable iron fortification vehicles.

PMID:
15743017
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk