Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2005 Mar 8;44(9):3358-68.

Insight into ribonuclease A domain swapping by molecular dynamics unfolding simulations.

Author information

  • 1Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy. lucianaesposito@chemistry.unina.it

Abstract

Bovine pancreatic ribonuclease (RNase A) deserves a special place among the numerous proteins that form oligomers by three-dimensional domain swapping. In fact, under destabilizing conditions and at high protein concentrations, it can swap two different domains, the N-terminal alpha-helix or the C-terminal beta-strand, leading to dimers with different quaternary structures. With the change in the unfolding conditions, the relative abundance of the two dimers varies, and the prevalence of one dimer over the other is inverted. To investigate the dynamic behavior of the termini, four independent 10 ns high-temperature molecular dynamics simulations of RNase A were carried out at two different pH values in an attempt to reproduce the experimental conditions of neutral and very low pH that favor the formation of the N- and C-terminal domain-swapped dimers, respectively. In agreement with experimental data, under mild unfolding conditions, a partial or complete opening of the N-terminal arm is observed, whereas the dislocation of the C-terminus away from the core of the structure occurs only during the low-pH simulations. Furthermore, the picture emerging from this study indicates that the same protein can have different pathways for domain swapping. Indeed, in RNase A the C-terminal swapping requires a substantial unfolding of the monomers, whereas the N-terminal swapping can occur through only partial unfolding.

PMID:
15736946
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk