Send to:

Choose Destination
See comment in PubMed Commons below
Oncogene. 2005 May 12;24(21):3492-502.

Stimulation of the Ras-MAPK pathway leads to independent phosphorylation of histone H3 on serine 10 and 28.

Author information

  • 1Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9.


The Ras-mitogen activated protein kinase (Ras-MAPK) pathway plays an integral role in the formation of human malignancies. Stimulation of this pathway results in phosphorylation of histone H3 at serines 10 and 28 and expression of immediate-early genes. Phosphorylated (serine 10) H3, which is also acetylated on lysine 14, is associated with immediate-early genes. In this report, we investigated the relationship between these two H3 phosphorylation events in parental and ras-transformed fibroblasts. Immunoblot analyses of two-dimensional gel patterns demonstrated that all three H3 variants were phosphorylated after stimulation of the Ras-MAPK pathway and during mitosis. Following stimulation of the Ras-MAPK pathway, H3 phosphorylated on serines 10 and 28 was excluded from regions of highly condensed chromatin and was present in increased levels in ras-transformed cells. Although H3 phosphorylated at serine 10 or 28 was dynamically acetylated, H3 phosphorylated at serine 28 had a higher steady state of acetylation than that of H3 phosphorylated at serine 10. When visualized with indirect immunofluorescence, most foci of phosphorylated serine 28 H3 did not co-localize with foci of H3 phosphorylated on serine 10 or phosphoacetylated on serine 10 and lysine 14, suggesting that these two phosphorylation events act separately to promote gene expression.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk