Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2005 Feb 23;25(8):1881-8.

Magnetic resonance diffusion tensor microimaging reveals a role for Bcl-x in brain development and homeostasis.

Author information

  • 1Department of Radiology, Division of Nuclear Magnetic Resonance Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.


A new technique based on diffusion tensor imaging and computational neuroanatomy was developed to efficiently and quantitatively characterize the three-dimensional morphology of the developing brains. The technique was used to analyze the phenotype of conditional Bcl-x knock-out mice, in which the bcl-x gene was deleted specifically in neurons of the cerebral cortex and hippocampus beginning at embryonic day 13.5 as cells became postmitotic. Affected brain regions and associated axonal tracts showed severe atrophy in adult Bcl-x-deficient mice. Longitudinal studies revealed that these phenotypes are established by regressive processes that occur primarily during the first postnatal week, whereas neurogenesis and migration showed no obvious abnormality during embryonic stages. Specific families of white matter tracts that once formed normally during the embryonic stages underwent dramatic degeneration postnatally. Thus, this technique serves as a powerful tool to efficiently localize temporal and spatial manifestation of morphological phenotype.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk