Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biotechniques. 2005 Feb;38(2):287-93.

Improved real-time RT-PCR method for high-throughput measurements using second derivative calculation and double correction.

Author information

  • 1Molecular Endocrinology and Oncology Research Center, Laval University, Quebec, Canada. Van.Luu-The@crchul.ulaval.ca


Quantification of mRNA expression levels using real-time reverse transcription PCR (RT-PCR) is increasingly used to validate results of DNA microarrays or GeneChips. It requires an improved method that is more robust and more suitable for high-throughput measurements. In this report, we compare a user non-influent, second derivative method with that of a user influent, fit point method that is widely used in the literature. We also describe the advantage of using a double correction: one correction using the expression levels of a housekeeping gene of an experiment as an internal standard and a second using reference expression levels of the same housekeeping gene in the tissue or cells. The first correction permits one to decrease errors due to sample preparation and handling, while the second correction permits one to avoid the variation of the results with the variability of housekeeping in each tissue, especially in experiments using various treatments. The data indicate that the real-time PCR method is highly efficient with an efficiency coefficient close to the theoretical value of two. The results also show that the second derivative method is more accurate than the fit point method in quantifying low gene expression levels. Using triplicate experiments, we show that measurement variations using our method are low with a mean of variation coefficients of <1%.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Informa Healthcare, USA
    Loading ...
    Write to the Help Desk