Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Curr Biol. 2005 Feb 22;15(4):284-94.

Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo.

Author information

  • 1Program in Developmental Biology, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.

Abstract

BACKGROUND:

Asymmetric localization of mRNAs within cells promotes precise spatio-temporal control of protein synthesis. Although cytoskeletal transport-based localization during Drosophila oogenesis is well characterized, little is known about the mechanisms that operate to localize maternal RNAs in the early embryo. One such mechanism-termed "degradation/protection"-acts on maternal Hsp83 transcripts, removing them from the bulk cytoplasm while protecting them in the posterior pole plasm.

RESULTS:

Here, we identify the RNA binding protein, Smaug, previously known as a translational repressor of nanos, as a key regulator of degradation/protection-based transcript localization. In smaug mutants, degradation of Hsp83 transcripts is not triggered, and, thus, localization does not occur. Hsp83 transcripts are in an mRNP complex containing Smaug, but Smaug does not translationally repress Hsp83 mRNA. Rather, Smaug physically interacts with the CCR4/POP2/NOT deadenylase, recruiting it to Hsp83 mRNA to trigger transcript deadenylation and degradation. When Smaug is targeted to heterologous stable reporter transcripts in vivo, these are deadenylated and destabilized. A deletion that removes the gene encoding CCR4 exhibits dose-sensitive interactions with Smaug in both a loss-of-function and a gain-of-function context. Reduction of CCR4 protein levels compromises Hsp83 transcript destabilization.

CONCLUSIONS:

Smaug triggers destabilization and localization of specific maternal transcripts through recruitment of the CCR4/POP2/NOT deadenylase. In contrast, Smaug-mediated translational repression is accomplished via an indirect interaction between Smaug and eIF4E, a component of the basic translation machinery. Thus, Smaug is a multifunctional posttranscriptional regulator that employs distinct mechanisms to repress translation and to induce degradation of target transcripts.

PMID:
15723788
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk