Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Apr 29;280(17):17294-300. Epub 2005 Feb 17.

Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers.

Author information

  • 1Department of Neurobiology and Behavior and Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.

Abstract

Increasing evidence suggests that amyloid peptides associated with a variety of degenerative diseases induce neurotoxicity in their intermediate oligomeric state, rather than as monomers or fibrils. To test this hypothesis and investigate the possible involvement of Ca2+ signaling disruptions in amyloid-induced cytotoxicity, we made homogeneous preparations of disease-related amyloids (Abeta, prion, islet amyloid polypeptide, polyglutamine, and lysozyme) in various aggregation states and tested their actions on fluo-3-loaded SH-SY5Y cells. Application of oligomeric forms of all amyloids tested (0.6-6 microg ml-1) rapidly (approximately 5 s) elevated intracellular Ca2+, whereas equivalent amounts of monomers and fibrils did not. Ca2+ signals evoked by Abeta42 oligomers persisted after depletion of intracellular Ca2+ stores, and small signals remained in Ca2+-free medium, indicating contributions from both extracellular and intracellular Ca2+ sources. The increased membrane permeability to Ca2+ cannot be attributed to activation of endogenous Ca2+ channels, because responses were unaffected by the potent Ca2+-channel blocker cobalt (20 microm). Instead, observations that Abeta42 and other oligomers caused rapid cellular leakage of anionic fluorescent dyes point to a generalized increase in membrane permeability. The resulting unregulated flux of ions and molecules may provide a common mechanism for oligomer-mediated toxicity in many amyloidogenic diseases, with dysregulation of Ca2+ ions playing a crucial role because of their strong trans-membrane concentration gradient and involvement in cell dysfunction and death.

PMID:
15722360
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk