Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Apr 29;280(17):16949-54. Epub 2005 Feb 18.

Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in myotonic dystrophy cells.

Author information

  • 1Laboratory of Human Genetics, Laval University Medical Research Centre, CHUQ, Pavillon CHUL, Ste-Foy, Quebec G1V 7P4, Canada.

Abstract

Small interfering RNA (siRNA) duplexes induce the specific cleavage of target RNAs in mammalian cells. Their involvement in down-regulation of gene expression is termed RNA interference (RNAi). It is widely believed that RNAi predominates in the cytoplasm. We report here the co-existence of cytoplasmic and nuclear RNAi phenomena in primary human myotonic dystrophy type 1 (DM1) cells by targeting myotonic dystrophy protein kinase (DMPK) mRNAs. Heterozygote DM1 myoblasts from a human DM1 fetus produce a nuclear retained mutant DMPK transcript with large CUG repeats ( approximately 3,200) from one allele of the DMPK gene and a wild type transcript with 18 CUG repeats, thus providing for both a nuclear and cytoplasmic expression profile to be evaluated. We demonstrate here for the first time down-regulation of the endogenous nuclear retained mutant DMPK mRNAs targeted with lentivirus-delivered short hairpin RNAs (shRNAs). This nuclear RNAi(-like) phenomenon was not observed when synthetic siRNAs were delivered by cationic lipids, suggesting either a link between processing of the shRNA and nuclear import or a separate pathway for processing shRNAs in the nuclei. Our observation of simultaneous RNAi on both cytoplasmic and nuclear retained DMPK has important implications for post-transcriptional gene regulation in both compartments of mammalian cells.

PMID:
15722335
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk