Format

Send to

Choose Destination
See comment in PubMed Commons below
Arch Neurol. 2005 Feb;62(2):223-9.

Fate of immortalized human neuronal progenitor cells transplanted in rat spinal cord.

Author information

  • 1Department of Neurology and the David Mahoney Institute of Neurological Sciences, University of Pennsylvania Medical Center, Philadelphia 19104-4283, USA.

Abstract

BACKGROUND:

Replacement of neurons and glia by transplantation has been proposed as a therapy for neurodegenerative diseases, including amyotrophic lateral sclerosis. This strategy requires using human motor neuronal progenitor cells or xenografts of animal cells, but there is little evidence that xenografted neuronal cells can survive in spinal cord despite immunosuppression.

OBJECTIVE:

To clarify the mechanisms responsible for the death of xenografted neurons in spinal cord.

METHODS:

Cells from an immortalized, neuronally committed, human embryonic spinal cord-derived cell line (HSP1) that expresses motor neuronal properties in vitro were transplanted into adult rat spinal cord. The rats were killed at intervals up to 8 weeks and serial sections through the graft sites were processed for immunofluorescence using primary antibodies against human nuclear and mitochondrial antigens, microtubule-associated protein 2, TUJ1, CD5, natural killer cells, and activated microglia-macrophages, caspase-3 and caspase-9.

RESULTS:

Grafted cells did not migrate and underwent partial differentiation along a neuronal pathway. They were rejected after 4 weeks despite cyclosporine immunosuppression. Cells died by apoptosis via the cytochrome c/caspase-9/caspase-3 pathway. The host response included natural killer cells and activated microglia-macrophages but few T cells.

CONCLUSIONS:

Intraspinal neuronal xenotransplantation failed because of apoptotic cell death. Neither T cells nor the spinal cord environment, which favors gliogenesis, are likely to have been responsible, but natural killer cells may have been involved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Write to the Help Desk