Send to:

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2005 Feb 14;579(5):1143-8.

Neutron diffraction reveals sequence-specific membrane insertion of pre-fibrillar islet amyloid polypeptide and inhibition by rifampicin.

Author information

  • 1Veterinary Biomedical Sciences, R(D)SVS, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK.


Human islet amyloid polypeptide (hIAPP) forms amyloid deposits in non-insulin-dependent diabetes mellitus (NIDDM). Pre-fibrillar hIAPP oligomers (in contrast to monomeric IAPP or mature fibrils) increase membrane permeability, suggesting an important role in the disease. In the first structural study of membrane-associated hIAPP, lamellar neutron diffraction shows that oligomeric hIAPP inserts into phospholipid bilayers, and extends across the membrane. Rifampicin, which inhibits hIAPP-induced membrane permeabilisation in functional studies, prevents membrane insertion. In contrast, rat IAPP (84% identical to hIAPP, but non-amyloidogenic) does not insert into bilayers. Our findings are consistent with the hypothesis that membrane-active pre-fibrillar hIAPP oligomers insert into beta cell membranes in NIDDM.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk