Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Cell Physiol. 2005 Jul;289(1):C58-67. Epub 2005 Feb 9.

Inhibition of phosphoglucomutase activity by lithium alters cellular calcium homeostasis and signaling in Saccharomyces cerevisiae.

Author information

  • 1Department of Laboratory Medicine, Faculty of Medicine, Pécs University, Ifjúság u. 13, 7624 Pécs, Hungary.

Abstract

Phosphoglucomutase is a key enzyme of glucose metabolism that interconverts glucose-1-phosphate and glucose-6-phosphate. Loss of the major isoform of phosphoglucomutase in Saccharomyces cerevisiae results in a significant increase in the cellular glucose-1-phosphate-to-glucose-6-phosphate ratio when cells are grown in medium containing galactose as carbon source. This imbalance in glucose metabolites was recently shown to also cause a six- to ninefold increase in cellular Ca2+ accumulation. We found that Li+ inhibition of phosphoglucomutase causes a similar elevation of total cellular Ca2+ and an increase in 45Ca2+ uptake in a wild-type yeast strain grown in medium containing galactose, but not glucose, as sole carbon source. Li+ treatment also reduced the transient elevation of cytosolic Ca2+ response that is triggered by exposure to external CaCl2 or by the addition of galactose to yeast cells starved of a carbon source. Finally, we found that the Ca2+ over-accumulation induced by Li+ exposure was significantly reduced in a strain lacking the vacuolar Ca2+-ATPase Pmc1p. These observations suggest that Li+ inhibition of phosphoglucomutase results in an increased glucose-1-phosphate-to-glucose-6-phosphate ratio, which results in an accelerated rate of vacuolar Ca2+ uptake via the Ca2+-ATPase Pmc1p.

PMID:
15703203
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk