Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066202. Epub 2004 Dec 3.

Morphological transitions and bistability in Turing systems.

Author information

  • 1Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, FIN-02015 HUT, Finland.

Abstract

It is well known that in two dimensions Turing systems produce spots, stripes and labyrinthine patterns, and in three dimensions lamellar and spherical structures, or their combinations, are observed. In this paper we study transitions between these states in both two and three dimensions. First, we derive the regions of stability for different patterns using nonlinear bifurcation analysis. Then, we apply large scale computer simulations to analyze the pattern selection in a bistable system by studying the effect of parameter selection on morphological clustering and the appearance of topological defects. The method elaborated in this paper presents a probabilistic approach for studying pattern selection in a bistable reaction-diffusion system.

PMID:
15697479
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk