Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Vasc Endovascular Surg. 2005 Jan-Feb;39(1):1-14.

Gene therapy for the extension of vein graft patency: a review.

Author information

  • 1Section of Vascular Surgery, Department of Surgery, University of Chicago, IL 60637, USA.


The mainstay of treatment for long-segment small-vessel chronic occlusive disease not amenable to endovascular intervention remains surgical bypass grafting using autologous vein. The procedure is largely successful and the immediate operative results almost always favorable. However, the lifespan of a given vein graft is highly variable, and less than 50% will remain primarily patent after 5 years. The slow process of graft malfunction is a result of the vein's chronic maladaptive response to the systemic arterial environment, its primary component being the uncontrolled proliferation of vascular smooth muscle cells (SMCs). It has recently been suggested that this response might be attenuated through pre-implantation genetic modification of the vein, so-called gene therapy for the extension of vein graft patency. Gene therapy seems particularly well suited for the prevention or postponement of vein graft failure since: (1) the stimulation of SMC proliferation appears to largely be an early and transient process, matching the kinetics of current gene transfer technology; (2) most veins are relatively normal and free of disease at the time of bypass allowing for effective gene transfer using a variety of systems; and (3) the target tissue is directly accessible during operation because manipulation and irrigation of the vein is part of the normal workflow of the surgical procedure. This review briefly summarizes the current knowledge of the incidence and basic mechanisms of vein graft failure, the vector systems and molecular targets that have been proposed as possible pre-treatments, the results of experimental genetic modification of vein grafts, and the few available clinical studies of gene therapy for vascular proliferative disorders.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk