Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Nat Mater. 2005 Mar;4(3):220-4. Epub 2005 Feb 6.

Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix.

Author information

  • 1Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA.


Sol-gel immobilization of soluble proteins has proven to be a viable method for stabilizing a wide variety of proteins in transparent inorganic matrices. The encapsulation of membrane-bound proteins has received much less attention, although work in this area suggests potential opportunities in microarray technology and high-throughput drug screening. The present paper describes a liposome/sol-gel architecture in which the liposome provides membrane structure and protein orientation to two transmembrane proteins, bacteriorhodopsin (bR) and F(0)F(1)-ATP synthase; the sol-gel encapsulation converts the liposomal solution into a robust material without compromising the intrinsic activity of the incorporated proteins. Here we report on two different proteoliposome-doped gels (proteogels) whose properties are determined by the transmembrane proteins. Proteogels containing bR proteoliposomes exhibit a stable proton gradient when irradiated with visible light, whereas proteogels containing proteoliposomes with both bR and F(0)F(1)-ATP synthase couple the photo-induced proton gradient to the production of ATP. These results demonstrate that materials based on the liposome/sol-gel architecture are able to harness the properties of transmembrane proteins and enable a variety of applications, from power generation and energy storage to the powering of molecular motors, and represent a new technology for performing complex chemical synthesis in a solid-state matrix.

Comment in

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk