Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Evol. 2005 Apr;22(4):1119-28. Epub 2005 Feb 2.

Evolutionary diversification of DNA methyltransferases in eukaryotic genomes.

Author information

  • 1Department of Ecology & Evolution, University of Chicago, USA. ponger@uchicago.edu

Abstract

In eukaryotes, C5-cytosine methylation is a common mechanism associated with a variety of functions such as gene regulation or control of genomic stability. Different subfamilies of eukaryotic methyltransferases (MTases) have been identified, mainly in metazoa, plants, and fungi. In this paper, we used hidden Markov models to detect MTases in completed or almost completed eukaryotic genomes, including different species of Protozoa. A phylogenetic analysis of MTases enabled us to define six subfamilies of MTases, including two new subfamilies. The dnmt1 subfamily that includes all the known MTases with a maintenance activity seems to be absent in the Protozoa. The dnmt2 subfamily seems to be the most widespread, being present even in the nonmethylated Dictyostelium discoideum. We also found two dnmt2 members in the bacterial genus Geobacter, suggesting that horizontal transfers of MTases occurred between eukaryotes and prokaryotes. Even if the direction of transfer cannot be determined, this relationship might be useful for understanding the function of this enigmatic subfamily of MTases. Globally, our analysis reveals a great diversity of MTases in eukaryotes, suggesting the existence of different methylation systems. Our results also suggest acquisitions and losses of different MTases in every eukaryotic lineage studied and that some eukaryotes appear to be devoid of methylation.

PMID:
15689527
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk