Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Endocrinol. 2005 Feb;184(2):351-9.

Prolactin, the prolactin receptor and uncoupling protein abundance and function in adipose tissue during development in young sheep.

Author information

  • 1Centre for Reproduction and Early Life, Institute of Clinical Research, Queen's Medical Centre, University Hospital, Nottingham, NG7 2UH, UK.

Abstract

A primary role of the prolactin receptor (PRLR) during fetal and postnatal development has been suggested to be the regulation of uncoupling protein (UCP) expression. We, therefore, determined whether: (1) the rate of loss of UCP1 from brown adipose tissue after birth was paralleled by the disappearance of PRLR; and (2) administration of either pituitary extract prolactin (PRL) containing a mixture of posttranslationally modified forms or its pseudophosphorylated form (S179D PRL) improved thermoregulation and UCP1 function over the first week of neonatal life. PRLR abundance was greatest in adipose tissue 6 h after birth before declining up to 30 days of age, a trend mirrored by first a gain and then a loss of UCP1. In contrast, in the liver--which does not possess UCPs--a postnatal decline in PRLR was not observed. Administration of PRL resulted in an acute increase in colonic temperature in conjunction with increased plasma concentrations of non-esterified fatty acids and, as a result, the normal postnatal decline in body temperature was delayed. S179D PRL at lower concentrations resulted in a transient rise in colonic temperature at both 2 and 6 days of age. In conclusion, we have demonstrated a close relationship between the ontogeny of UCP1 and the PRLR. Exogenous PRL administration elicits a thermogenic effect suggesting an important role for the PRLR in regulating UCP1 function.

PMID:
15684343
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk