Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Physiol Biochem Zool. 2004 Nov-Dec;77(6):998-1018.

Evolution and consequences of endothermy in fishes.

Author information

  • 1Department of Biological Science, California State University, Fullerton, CA 92834-6850, USA. kdickson@fullerton.edu

Abstract

Regional endothermy, the conservation of metabolic heat by vascular countercurrent heat exchangers to elevate the temperature of the slow-twitch locomotor muscle, eyes and brain, or viscera, has evolved independently among several fish lineages, including lamnid sharks, billfishes, and tunas. All are large, active, pelagic species with high energy demands that undertake long-distance migrations and move vertically within the water column, thereby encountering a range of water temperatures. After summarizing the occurrence of endothermy among fishes, the evidence for two hypothesized advantages of endothermy in fishes, thermal niche expansion and enhancement of aerobic swimming performance, is analyzed using phylogenetic comparisons between endothermic fishes and their ectothermic relatives. Thermal niche expansion is supported by mapping endothermic characters onto phylogenies and by combining information about the thermal niche of extant species, the fossil record, and paleoceanographic conditions during the time that endothermic fishes radiated. However, it is difficult to show that endothermy was required for niche expansion, and adaptations other than endothermy are necessary for repeated diving below the thermocline. Although the convergent evolution of the ability to elevate slow-twitch, oxidative locomotor muscle temperatures suggests a selective advantage for that trait, comparisons of tunas and their ectothermic sister species (mackerels and bonitos) provide no direct support of the hypothesis that endothermy results in increased aerobic swimming speeds, slow-oxidative muscle power, or energetic efficiency. Endothermy is associated with higher standard metabolic rates, which may result from high aerobic capacities required by these high-performance fishes to conduct many aerobic activities simultaneously. A high standard metabolic rate indicates that the benefits of endothermy may be offset by significant energetic costs.

PMID:
15674772
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for University of Chicago Press
    Loading ...
    Write to the Help Desk