Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Antimicrob Agents Chemother. 2005 Feb;49(2):612-8.

Structure-activity relationships of different beta-lactam antibiotics against a soluble form of Enterococcus faecium PBP5, a type II bacterial transpeptidase.

Author information

  • 1Louis Stokes Cleveland Veterans Affairs Medical Center, 10701 East Blvd., Cleveland, OH 44106, USA.

Abstract

Penicillin-binding proteins (PBPs) catalyze the essential reactions in the biosynthesis of cell wall peptidoglycan from glycopeptide precursors. beta-Lactam antibiotics normally interfere with this process by reacting covalently with the active site serine to form a stable acyl-enzyme. The design of novel beta-lactams active against penicillin-susceptible and penicillin-resistant organisms will require a better understanding of the molecular details of this reaction. To that end, we compared the affinities of different beta-lactam antibiotics to a modified soluble form of a resistant Enterococcus faecium PBP5 (Delta1-36 rPBP5). The soluble protein, Delta1-36 rPBP5, was expressed in Escherichia coli and purified, and the NH(2)-terminal protein sequence was verified by amino acid sequencing. Using beta-lactams with different R1 side chains, we show that azlocillin has greater affinity for Delta1-36 rPBP5 than piperacillin and ampicillin (apparent K(i) = 7 +/- 0.3 microM, compared to 36 +/- 3 and 51 +/- 10 microM, respectively). Azlocillin also exhibits the most rapid acylation rate (apparent k(2) = 15 +/- 4 M(-1) s(-1)). Meropenem demonstrates an affinity for Delta1-36 rPBP5 comparable to that of ampicillin (apparent K(i) = 51 +/- 15 microM) but is slower at acylating (apparent k(2) = 0.14 +/- 0.02 M(-1) s(-1)). This characterization defines important structure-activity relationships for this clinically relevant type II transpeptidase, shows that the rate of formation of the acyl-enzyme is an essential factor determining the efficacy of a beta-lactam, and suggests that the specific side chain interactions of beta-lactams could be modified to improve inactivation of resistant PBPs.

PMID:
15673741
[PubMed - indexed for MEDLINE]
PMCID:
PMC547200
Free PMC Article

Images from this publication.See all images (6)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk