Display Settings:


Send to:

Choose Destination
Cell Calcium. 2005 Mar;37(3):245-50.

Role of third extracellular domain of plasma membrane Ca2+-Mg2+-ATPase based on the novel inhibitor caloxin 3A1.

Author information

  • 1Department of Medicine, McMaster University, 1200 Main Street West, Hamilton, Ont., L8N 3Z5, Canada.


The plasma membrane Ca2+ pump (PMCA) is a Ca2+-Mg2+-ATPase that expels Ca2+ from cells to help them maintain low concentrations of cytosolic Ca2+ ([Ca2+]i). It contains five putative extracellular domains (PEDs). Earlier we had reported that binding to PED2 leads to PMCA inhibition. Mutagenesis of residues in transmembrane domain 6 leads to loss of PMCA activity. PED3 connects transmembrane domains 5 and 6. PED3 is only five amino acid residues long. By screening a phage display library, we obtained a peptide sequence that binds this target. After examining a number of peptides related to this original sequence, we selected one that inhibits the PMCA pump (caloxin 3A1). Caloxin 3A1 inhibits PMCA but not the sarcoplasmic reticulum Ca2+-pump. Caloxin 3A1 did not inhibit formation of the 140 kDa acylphosphate intermediate from ATP or its degradation. Thus, PEDs play a role in the reaction cycle of PMCA even though sites for binding to the substrates Ca2+ and Mg-ATP2-, and the activator calmodulin are all in the cytosolic domains of PMCA. In endothelial cells exposed to low concentration of a Ca2+-ionophore, caloxin 3A1 caused a further increase in [Ca2+]i proving its ability to inhibit PMCA pump extracellularly. Thus, even though PED3 is the shortest PED, it plays key role in the PMCA function.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk