Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurochem. 2005 Jan;92(2):362-7.

An RNAi strategy for treatment of amyotrophic lateral sclerosis caused by mutant Cu,Zn superoxide dismutase.

Author information

  • 1Department of Biochemistry and Molecular Pharmacology, University of Massachusetts, Worcester, Massachusetts 01605, USA.

Erratum in

  • J Neurochem. 2005 Mar;92(6):1554.

Abstract

Amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease) is a neurodegenerative disease characterized by motor neuron degeneration, paralysis and death. One cause of this disease is mutations in the Cu,Zn superoxide dismutase (SOD1) gene. As mutant SOD1 acquires a toxic property that kills motor neurons, by reducing the mutant protein the disease progression may be slowed or prevented. While mutant SOD1 is toxic, the wild-type SOD1 is indispensable for motor neuron health. Therefore, the ideal therapeutic strategy would be to inhibit selectively the mutant protein expression. Previously we have demonstrated that RNA interference (RNAi) can selectively inhibit some mutant SOD1 expression. However, more than 100 SOD1 mutants can cause ALS and all mutants cannot be inhibited selectively by RNAi. To overcome this obstacle, we have designed a replacement RNAi strategy. Using this strategy, all mutants and wild-type genes are inhibited by RNAi. The wild-type SOD1 function is then replaced by designed wild-type SOD1 genes that are resistant to the RNAi. Here we demonstrate the concept of this strategy.

PMID:
15663483
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk