Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Carcinogenesis. 2005 Apr;26(4):771-8. Epub 2005 Jan 20.

3,3'-Diindolylmethane inhibits angiogenesis and the growth of transplantable human breast carcinoma in athymic mice.

Author information

  • 1Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA.

Abstract

Studies have linked the consumption of broccoli and other cruciferous vegetables to a reduced risk of breast cancer. The phytochemical indole-3-carbinol (I3C), present in cruciferous vegetables, and its major acid-catalyzed reaction product 3,3'-diindolylmethane (DIM) have bioactivities relevant to the inhibition of carcinogenesis. In this study, the effect of DIM on angiogenesis and tumorigenesis in a rodent model was investigated. We found that DIM produced a concentration-dependent decrease in proliferation, migration, invasion and capillary tube formation of cultured human umbilical vein endothelial cells (HUVECs). Consistent with its antiproliferative effect, which was significant at only 5 microM DIM, this indole caused a G1 cell cycle arrest in actively proliferating HUVECs. Furthermore, DIM downregulated the expression of cyclin-dependent kinases 2 and 6 (CDK2, CDK6), and upregulated the expression of CDK inhibitor, p27(Kip1), in HUVECs. We observed further in a complementary in vivo Matrigel plug angiogenesis assay that, compared with vehicle control, neovascularization was inhibited up to 76% following the administration of 5 mg/kg DIM to female C57BL/6 mice. Finally, this dose of DIM also inhibited the growth of human MCF-7 cell tumor xenografts by up to 64% in female athymic (nu/nu) mice, compared with the vehicle control. This is the first study to show that DIM can strongly inhibit the development of human breast tumor in a xenograft model and to provide evidence for the antiangiogenic properties of this dietary indole.

PMID:
15661811
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk