Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Brain Res. 2005 May;162(4):474-89. Epub 2005 Jan 15.

Differences in preferred reference frames for postural orientation shown by after-effects of stance on an inclined surface.

Author information

  • 1Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.

Abstract

This study reports a postural after-effect of leaning that follows a period of stance on an inclined surface with eyes closed. This leaning after-effect maintained the body-to-surface relationship as if subjects still stood on the incline. We examined the incidence and robustness of the leaning after-effect in 51 healthy subjects. The location of the center of pressure (CoP) under the feet and the alignment of the trunk and legs were measured before, during and after blindfolded subjects stood on a 5 degrees toes-up inclined surface for 2.5 min. When the surface was inclined, all subjects stood with their trunk and legs aligned near to gravity-vertical, similar to the alignment adopted in the pre-incline period. When the surface returned to horizontal in the post-incline period, there was a continuum of postural alignment strategies across subjects. At one extreme, subjects leaned forward, with an average trunk lean near 5 degrees . The leaned posture decayed exponentially toward baseline postural alignment across a period of up to 5 min. At the other extreme, subjects did not lean in the post-incline period, but instead, stayed aligned near upright with respect to gravity. Subjects were highly consistent in their post-incline postural behaviors upon repeated testing over days to months and across different directions of surface inclination. Our results suggest that individuals have well-established, preferred, sensory strategies for controlling postural orientation when vision is not available. Subjects who leaned in the post-incline period appear to depend more on the geometry of the support surface as a reference frame and to rely more on proprioceptive information to extract kinematic relationships, whereas subjects who did not lean appear to depend more on gravity as a reference frame and to rely more on sensory information related to forces and load.

PMID:
15654594
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Springer
    Loading ...
    Write to the Help Desk