Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochem Soc Symp. 2005;(72):129-38.

The conflicting role of brain cholesterol in Alzheimer's disease: lessons from the brain plasminogen system.

Author information

  • 1Cavalieri Ottolenghi Scientific Institute, Universita degli Studi di Torino, A.O. San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano (Torino), Italy.

Abstract

Retrospective clinical studies indicate that individuals chronically treated with cholesterol synthesis inhibitors, statins, are at lower risk of developing AD (Alzheimer's disease). Moreover, treatment of guinea pigs with high doses of simvastatin or drastic reduction of cholesterol in cultured cells decrease Abeta (beta-amyloid peptide) production. These data sustain the concept that high brain cholesterol is responsible for Abeta accumulation in AD, providing the scientific support for the proposed use of statins to prevent this disease. However, a number of unresolved issues raise doubts that high brain cholesterol is to blame. First, it has not been shown that higher neuronal cholesterol increases Abeta production. Secondly, it has not been demonstrated that neurons in AD have more cholesterol than control neurons. On the contrary, the brains of AD patients show a specific down-regulation of seladin-1, a protein involved in cholesterol synthesis, and low membrane cholesterol was observed in hippocampal membranes of ApoE4 (apolipoprotein E4) AD cases. This effect was also evidenced by altered cholesterol-rich membrane domains (rafts) and raft-mediated functions, such as diminished generation of the Abeta-degrading enzyme plasmin. Thirdly, numerous genetic defects that cause neurodegeneration are due to defective cholesterol metabolism. Fourthly, in female mice, the most brain-permeant statin induces neurodegeneration and high amyloid production. Altogether, this evidence makes it difficult to accept that statins are beneficial through acting as brain cholesterol-synthesis inhibitors. It appears more likely that their advantageous role arises from improved brain oxygenation.

PMID:
15649137
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk