Format

Send to:

Choose Destination
See comment in PubMed Commons below
Br J Pharmacol. 2005 Jan;144(1):123-32.

The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-epsilon and p38 MAPK.

Author information

  • 1Department of Anesthesiology, University Hospital of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany. Nina.Weber@uni-duesseldorf.de

Abstract

Xenon is an anesthetic with minimal hemodynamic side effects, making it an ideal agent for cardiocompromised patients. We investigated if xenon induces pharmacological preconditioning (PC) of the rat heart and elucidated the underlying molecular mechanisms. For infarct size measurements, anesthetized rats were subjected to 25 min of coronary artery occlusion followed by 120 min of reperfusion. Rats received either the anesthetic gas xenon, the volatile anesthetic isoflurane or as positive control ischemic preconditioning (IPC) during three 5-min periods before 25-min ischemia. Control animals remained untreated for 45 min. To investigate the involvement of protein kinase C (PKC) and p38 mitogen-activated protein kinase (MAPK), rats were pretreated with the PKC inhibitor calphostin C (0.1 mg kg(-1)) or the p38 MAPK inhibitor SB203580 (1 mg kg(-1)). Additional hearts were excised for Western blot and immunohistochemistry. Infarct size was reduced from 50.9+/-16.7% in controls to 28.1+/-10.3% in xenon, 28.6+/-9.9% in isoflurane and to 28.5+/-5.4% in IPC hearts. Both, calphostin C and SB203580, abolished the observed cardioprotection after xenon and isoflurane administration but not after IPC. Immunofluorescence staining and Western blot assay revealed an increased phosphorylation and translocation of PKC-epsilon in xenon treated hearts. This effect could be blocked by calphostin C but not by SB203580. Moreover, the phosphorylation of p38 MAPK was induced by xenon and this effect was blocked by calphostin C. In summary, we demonstrate that xenon induces cardioprotection by PC and that activation of PKC-epsilon and its downstream target p38 MAPK are central molecular mechanisms involved. Thus, the results of the present study may contribute to elucidate the beneficial cardioprotective effects of this anesthetic gas.

PMID:
15644876
[PubMed - indexed for MEDLINE]
PMCID:
PMC1575984
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing Icon for PubMed Central
    Loading ...
    Write to the Help Desk