Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Biol. 2005;6(1):R3. Epub 2004 Dec 22.

Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease.

Author information

  • 1Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143-2200, USA. niwa@ucsd.edu

Abstract

BACKGROUND:

The unfolded protein response (UPR) allows intracellular feedback regulation that adjusts the protein-folding capacity of the endoplasmic reticulum (ER) according to need. The signal from the ER lumen is transmitted by the ER-transmembrane kinase Ire1, which upon activation displays a site-specific endoribonuclease activity. Endonucleolytic cleavage of the intron from the HAC1 mRNA (encoding a UPR-specific transcription factor) is the first step in a nonconventional mRNA splicing pathway; the released exons are then joined by tRNA ligase. Because only the spliced mRNA is translated, splicing is the key regulatory step of the UPR.

RESULTS:

We developed methods to search for additional mRNA substrates of Ire1p in three independent lines of genome-wide analysis. These methods exploited the well characterized enzymology and genetics of the UPR and the yeast genome sequence in conjunction with microarray-based detection. Each method successfully identified HAC1 mRNA as a substrate according to three criteria: HAC1 mRNA is selectively cleaved in vitro by Ire1; the HAC1 mRNA sequence contains two predicted Ire1 cleavage sites; and HAC1 mRNA is selectively degraded in tRNA ligase mutant cells.

CONCLUSION:

Within the limits of detection, no other mRNA satisfies any of these criteria, suggesting that a unique nonconventional mRNA-processing mechanism has evolved solely for carrying out signal transduction between the ER and the nucleus. The approach described here, which combines biochemical and genetic 'fractionation' of mRNA with a novel application of cDNA microarrays, is generally applicable to the study of pathways in which RNA metabolism and alternative splicing have a regulatory role.

PMID:
15642095
[PubMed - indexed for MEDLINE]
PMCID:
PMC549064
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk