Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2005 Mar;16(3):1439-48. Epub 2005 Jan 5.

Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I.

Author information

  • 1Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.

Abstract

Within the endoplasmic reticulum (ER), mannoses and glucoses, donated from dolichol-phosphate-mannose and -glucose, are transferred to N-glycan and GPI-anchor precursors, and serine/threonine residues in many proteins. Glycosyltransferases that mediate these reactions are ER-resident multitransmembrane proteins with common characteristics, forming a superfamily of >10 enzymes. Here, we report an essential component of glycosylphosphatidylinositol-mannosyltransferase I (GPI-MT-I), which transfers the first of the four mannoses in the GPI-anchor precursors. We isolated a Chinese hamster ovary (CHO) cell mutant defective in GPI-MT-I but not its catalytic component PIG-M. The mutant gene, termed phosphatidylinositolglycan-class X (PIG-X), encoded a 252-amino acid ER-resident type I transmembrane protein with a large lumenal domain. PIG-X and PIG-M formed a complex, and PIG-M expression was <10% in the absence of PIG-X, indicating that PIG-X stabilizes PIG-M. We found that Saccharomyces cerevisiae Pbn1p/YCL052Cp, which was previously reported to be involved in autoprocessing of proproteinase B, is the functional homologue of PIG-X; Pbn1p is critical for Gpi14p/YJR013Wp function, the yeast homologue of PIG-M. This is the first report of an essential subcomponent of glycosyltransferases using dolichol-phosphate-monosaccharide.

PMID:
15635094
[PubMed - indexed for MEDLINE]
PMCID:
PMC551505
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk