Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Endocrinol Metab. 2005 May;288(5):E980-8. Epub 2004 Dec 21.

Repression of protein synthesis and mTOR signaling in rat liver mediated by the AMPK activator aminoimidazole carboxamide ribonucleoside.

Author information

  • 1Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA.

Abstract

The studies described herein were designed to investigate the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), an activator of the AMP-activated protein kinase (AMPK), on the translational control of protein synthesis and signaling through the mammalian target of rapamycin (mTOR) in rat liver. Effects of AICAR observed in vivo were compared with those obtained in an in situ perfused liver preparation to investigate activation of AMPK in the absence of accompanying changes in hormones and nutrients. AMPK became hyperphosphorylated, as assessed by a gel-shift analysis, in response to AICAR both in vivo and in situ; however, increased relative phosphorylation at the Thr172 site on the kinase was observed only in perfused liver. Phosphorylation of AMPK either in vivo or in situ was associated with a repression of protein synthesis as well as decreased phosphorylation of a number of targets of mTOR signaling including ribosomal protein S6 kinase 1, eukaryotic initiation factor (eIF)4G, and eIF4E-binding protein (4E-BP)1. The phosphorylation changes in eIF4G and 4E-BP1 were accompanied by a reduction in the amount of eIF4E present in the active eIF4E.eIF4G complex and an increase in the amount present in the inactive eIF4E.4E-BP1 complex. Reduced insulin signaling as well as differences in nutrient availability may have contributed to the effects observed in vivo as AICAR caused a fall in the serum insulin concentration. Overall, however, the results from both experimental models support a scenario in which AICAR directly represses protein synthesis and mTOR signaling in the liver through an AMPK-dependent mechanism.

PMID:
15613684
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk