Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2005 Jan 1;174(1):456-63.

In vivo ethanol exposure down-regulates TLR2-, TLR4-, and TLR9-mediated macrophage inflammatory response by limiting p38 and ERK1/2 activation.

Author information

  • 1Department of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, 2160 South First Avenue, Maywood, IL 20153, USA.

Abstract

Ethanol is known to increase susceptibility to infections, in part, by suppressing macrophage function. Through TLRs, macrophages recognize pathogens and initiate inflammatory responses. In this study, we investigated the effect of acute ethanol exposure on murine macrophage activation mediated via TLR2, TLR4, and TLR9. Specifically, the study focused on the proinflammatory cytokines IL-6 and TNF-alpha and activation of p38 and ERK1/2 MAPKs after a single in vivo exposure to physiologically relevant level of ethanol followed by ex vivo stimulation with specific TLR ligands. Acute ethanol treatment inhibited IL-6 and TNF-alpha synthesis and impaired p38 and ERK1/2 activation induced by TLR2, TLR4, and TLR9 ligands. We also addressed the question of whether ethanol treatment modified activities of serine/threonine-specific, tyrosine-specific phosphatases, and MAPK phosphatase type 1. Inhibitors of three families of protein phosphatases did not restore ethanol-impaired proinflammatory cytokine production nor p38 and ERK1/2 activation. However, inhibitors of serine/threonine protein phosphatase type 1 and type 2A significantly increased IL-6 and TNF-alpha levels, and prolonged activation of p38 and ERK1/2 when triggered by TLR4 and TLR9 ligands. In contrast, with TLR2 ligand stimulation, TNF-alpha production was reduced, whereas IL-6 levels, and p38 and ERK1/2 activation were not affected. In conclusion, acute ethanol exposure impaired macrophage responsiveness to multiple TLR agonists by inhibiting IL-6 and TNF-alpha production. Mechanism responsible for ethanol-induced suppression involved inhibition of p38 and ERK1/2 activation. Furthermore, different TLR ligands stimulated IL-6 and TNF-alpha production via signaling pathways, which showed unique characteristics.

PMID:
15611271
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk