Send to:

Choose Destination
See comment in PubMed Commons below
Plant Cell. 2005 Jan;17(1):164-81. Epub 2004 Dec 17.

Two plant-viral movement proteins traffic in the endocytic recycling pathway.

Author information

  • 1Programme of Cell-to-Cell Communication, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom.


Many plant viruses exploit a conserved group of proteins known as the triple gene block (TGB) for cell-to-cell movement. Here, we investigated the interaction of two TGB proteins (TGB2 and TGB3) of Potato mop-top virus (PMTV), with components of the secretory and endocytic pathways when expressed as N-terminal fusions to green fluorescent protein or monomeric red fluorescent protein (mRFP). Our studies revealed that fluorophore-labeled TGB2 and TGB3 showed an early association with the endoplasmic reticulum (ER) and colocalized in motile granules that used the ER-actin network for intracellular movement. Both proteins increased the size exclusion limit of plasmodesmata, and TGB3 accumulated at plasmodesmata in the absence of TGB2. TGB3 contains a putative Tyr-based sorting motif, mutations in which abolished ER localization and plasmodesmatal targeting. Later in the expression cycle, both fusion proteins were incorporated into vesicular structures. TGB2 associated with these structures on its own, but TGB3 could not be incorporated into the vesicles in the absence of TGB2. Moreover, in addition to localization to the ER and motile granules, mRFP-TGB3 was incorporated into vesicles when expressed in PMTV-infected epidermal cells, indicating recruitment by virus-expressed TGB2. The TGB fusion protein-containing vesicles were labeled with FM4-64, a marker for plasma membrane internalization and components of the endocytic pathway. TGB2 also colocalized in vesicles with Ara7, a Rab5 ortholog that marks the early endosome. Protein interaction analysis revealed that recombinant TGB2 interacted with a tobacco protein belonging to the highly conserved RME-8 family of J-domain chaperones, shown to be essential for endocytic trafficking in Caenorhabditis elegans and Drosophila melanogaster. Collectively, the data indicate the involvement of the endocytic pathway in viral intracellular movement, the implications of which are discussed.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk