Format

Send to

Choose Destination
See comment in PubMed Commons below
J Insect Physiol. 2004 Nov;50(11):1001-13.

Electrophysiological responses to salts from antennal chaetoid taste sensilla of the ground beetle Pterostichus aethiops.

Author information

  • 1Estonian Agricultural University, Institute of Plant Protection, 64 Kreutzwaldi Street, 51014 Tartu, Estonia. merivee@eau.ee

Abstract

Antennal gustatory sensilla of the ground beetle Pterostichus aethiops (Pz., 1797) (Coleoptera, Carabidae) respond to salts, the three sensory cells, A-, B- and C-cells, producing action potentials that are distinguished by differences in their shape, amplitude, duration and polarity of spikes. The B-cell (salt cell) was highly sensitive to both ionic composition and concentration of the tested nine salt solutions showing phasic-tonic type of reaction with a pronounced phasic component. The stimulating effect was dominated by the cations involved, and in most cases, monovalent cations were more effective stimuli than divalent cations. Salt concentration/response relations were tested with NaCl at 1, 10, 100 and 1000 mmol l(-1): mean firing rates increased from 0.8 to 44 spikes per first second of the response, respectively. The pH value of the stimulating solutions also influenced the B-cell rate of firing. By contrast, the pH level of stimulus solutions influenced the A-cells' phasic-tonic response more than the ionic composition or concentration of these solutions. Compared to a standard 100 mmol l(-1) salt (NaCl) solution (pH 6.3), alkaline solutions of the salts NaCH3COO, Na2HPO4 and Na2B4O7 (pH 7.9, 8.5 and 9.3, respectively, all 100 mmol l(-1)) induced remarkably stronger responses in the A-cell. On the other hand, the reaction to an acid solution of NaH2PO4 (pH 4.5, 100 mmol l(-1)) was minimal. A-cell responses to neutral salts like NaCl, KCl, CaCl2, MgCl2 and C5H14NOCl (pH 6.1-6.5) varied largely in strength. Very low or no responses were observed with chlorides of divalent cations, CaCl2 and MgCl2, and choline chloride (C5H14NOCl), indicating that the ionic composition of the solutions also affected A-cell responses. Neural activity of the C-cell was not influenced by the salt solutions tested.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk