Send to:

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2004 Dec 15;64(24):9076-9.

Mitogen- and stress-activated protein kinase 1 activity and histone h3 phosphorylation in oncogene-transformed mouse fibroblasts.

Author information

  • 1Manitoba Institute of Cell Biology, Department of Biochemistry, University of Manitoba, Winnipeg, Manitoba, Canada.


Activation of the Ras-Raf-mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase-ERK signal transduction pathway or the SAPK2/p38 pathway results in the activation of mitogen- and stress-activated protein kinase 1 (MSK1). This activation of MSK1 leads to a rapid phosphorylation of histone H3 at Ser(10). Previously, we had demonstrated that Ser(10) phosphorylated H3 was elevated in Ciras-3 (c-Ha-ras-transformed 10T12) mouse fibroblasts and that H3 phosphatase activity was similar in Ciras-3 and 10T12 cells. Here, we demonstrate that the activities of ERK and MSK1, but not p38, are elevated in Ciras-3 cells relative to these activities in the parental 10T12 cells. Analyses of the subcellular distribution of MSK1 showed that the H3 kinase was similarly distributed in Ciras-3 and 10T12 cells, with most MSK1 being present in the nucleus. In contrast to many other chromatin modifying enzymes, MSK1 was loosely bound in the nucleus and was not a component of the nuclear matrix. Our results provide evidence that oncogene-mediated activation of the Ras-mitogen-activated protein kinase signal transduction pathway elevates the activity of MSK1, resulting in the increased steady-state levels of phosphorylated H3, which may contribute to the chromatin decondensation and aberrant gene expression observed in these cells.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk