Send to:

Choose Destination
See comment in PubMed Commons below
Genes Dev. 2004 Dec 15;18(24):3066-77.

CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum.

Author information

  • 1Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA.


Unfolded and malfolded client proteins impose a stress on the endoplasmic reticulum (ER), which contributes to cell death in pathophysiological conditions. The transcription factor C/EBP homologous protein (CHOP) is activated by ER stress, and CHOP deletion protects against its lethal consequences. We find that CHOP directly activates GADD34, which promotes ER client protein biosynthesis by dephosphorylating phospho-Ser 51 of the alpha-subunit of translation initiation factor 2 (eIF2alpha) in stressed cells. Thus, impaired GADD34 expression reduces client protein load and ER stress in CHOP(-/-) cells exposed to perturbations that impair ER function. CHOP(-/-) and GADD34 mutant cells accumulate less high molecular weight protein complexes in their stressed ER than wild-type cells. Furthermore, mice lacking GADD34-directed eIF2alpha dephosphorylation, like CHOP(-/-) mice, are resistant to renal toxicity of the ER stress-inducing drug tunicamycin. CHOP also activates ERO1alpha, which encodes an ER oxidase. Consequently, the ER of stressed CHOP(-/-) cells is relatively hypo-oxidizing. Pharmacological and genetic manipulations that promote a hypo-oxidizing ER reduce abnormal high molecular weight protein complexes in the stressed ER and protect from the lethal consequences of ER stress. CHOP deletion thus protects cells from ER stress by decreasing ER client protein load and changing redox conditions within the organelle.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk