Display Settings:

Format

Send to:

Choose Destination
Mol Cell Proteomics. 2005 Jan;4(1):73-83. Epub 2004 Dec 13.

Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome.

Author information

  • 1Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, California 94143-2240, USA.

Abstract

The identification of post-translational modifications to proteins is critical for understanding many important aspects of biology. Utilizing a collection of epitope-tagged yeast strains, we developed a novel approach to determine which proteins are modified by the small ubiquitin-related modifier (SUMO). We crossed traits useful for the detection of SUMO conjugation into 4246 tandem affinity purification-tagged strains and successfully immunoprecipitated and screened 2893 of these proteins for association with SUMO ( approximately 70% of the expressed proteome detectable by immunoblot analysis). We found 82 proteins associated with SUMO, including many of low abundance. Because our screen was performed under non-denaturing conditions, we were able to identify multiple members of four complexes that were associated with SUMO: the RSC chromatin remodeling complex, the mediator complex, the TFIID complex, and the septin complex. In addition, we describe five new direct conjugates of SUMO, and we mutated SUMO conjugation sites in four proteins. This is the first attempt to immunoprecipitate a large fraction of the proteome of a eukaryote, and it demonstrates the utility of this method to identify post-translational modifications in the yeast proteome.

PMID:
15596868
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk