Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2005 Jan 14;326(2):329-34.

ATP-stimulated interleukin-6 synthesis through P2Y receptors on human osteoblasts.

Author information

  • 1Department of Pharmacology, School of Dentistry, Aichi-Gakuin University, Nagoya 464-8650, Japan.


We investigated the effect of extracellular adenosine triphosphate (ATP) on the production of interleukin (IL)-6, whose molecules are capable of stimulating the development of osteoclasts from their hematopoietic precursors as well as are involved in signal transduction systems in human osteoblastic SaM-1 cells. These human osteoblasts constitutively expressed P2X4, P2X5, P2X6, P2Y2, P2Y5, and P2Y6 purinergic receptors. ATP increased gene- and protein-expression of IL-6 in SaM-1 cells. The expression of the IL-6 mRNA was maximal at 1h, and the increase in IL-6 synthesis in response to ATP (10-100 microM) occurred in a concentration-dependent manner. Over the same concentration range of the nucleotide that was effective for IL-6 synthesis, ATP caused an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)), which increase was inhibited by pretreatment with suramin, a P2Y receptor antagonist, or 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-trisphosphate receptor blocker, but not by the extracellular Ca(2+)-chelating agent EGTA. The pretreatment of SaM-1 cells with suramin or 2-APB also inhibited the increase in IL-6 synthesis in response to ATP. These findings suggest that extracellular ATP-induced IL-6 synthesis occurs through P2Y receptors and mobilization of Ca(2+) from internal stores in human osteoblastic cells.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk