Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2004 Dec 3;578(1-2):58-62.

The Ppz protein phosphatases regulate Trk-independent potassium influx in yeast.

Author information

  • 1Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra 08193, Barcelona, Spain.

Abstract

The Ppz protein phosphatases have been recently shown to negatively regulate the major potassium transport system in the yeast Saccharomyces cerevisiae, encoded by the TRK1 and TRK2 genes. We have found that, in the absence of the Trk system, Ppz mutants require abnormally high concentrations of potassium to proliferate. This can be explained by the observation that trk1 trk2 ppz1 or trk1 trk2 ppz1 ppz2 strains display a very poor rubidium uptake, with markedly increased Km values. These cells are very sensitive to the presence of several toxic cations in the medium, such as hygromicyn B or spermine, but not to lithium or sodium cations. At limiting potassium concentrations, addition of EGTA to the medium improves growth of these mutants. Therefore, our results indicate that, in addition to their role in regulating Trk potassium transporters, Ppz phosphatases (essentially Ppz1), positively affect the residual low affinity potassium transport mechanisms in yeast. These findings may provide a new way to elucidate the molecular nature of the low affinity potassium uptake system in yeast as well as a useful model to analyze the function of plant or mammalian potassium channels through heterologous expression in yeast.

PMID:
15581616
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk