Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Feb 18;280(7):5571-80. Epub 2004 Dec 3.

Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus.

Author information

  • 1Unité de Défense Innée et Inflammation, INSERM E336, Paris, France.

Abstract

Influenza A is a highly contagious single-stranded RNA virus that infects both the upper and lower respiratory tracts of humans. The host innate immune Toll-like receptor (TLR) 3 was shown previously in cells of myeloid origin to recognize the viral replicative, intermediate double-stranded RNA (dsRNA). Thus, dsRNA may be critical for the outcome of the infection. Here we first compared the activation triggered by either influenza A virus or dsRNA in pulmonary epithelial cells. We established that TLR3 is constitutively expressed in human alveolar and bronchial epithelial cells, and we describe its intracellular localization. Expression of TLR3 was positively regulated by the influenza A virus and by dsRNA but not by other inflammatory mediators, including bacterial lipopolysaccharide, the cytokines tumor necrosis factor-alpha and interleukin (IL)-1beta, and the protein kinase C activator phorbol 12-myristate 13-acetate. We also demonstrated that TLR3 contributes directly to the immune response of respiratory epithelial cells to influenza A virus and dsRNA, and we propose a molecular mechanism by which these stimuli induce epithelial cell activation. This model involves mitogen-activated protein kinases, phosphatidylinositol 3-kinase/Akt signaling, and the TLR3-associated adaptor molecule TRIF but not MyD88-dependent activation of the transcription factors NF-kappaB or interferon regulatory factor/interferon-sensitive response-element pathways. Ultimately, this signal transduction elicits an epithelial response that includes the secretion of the cytokines IL-8, IL-6, RANTES (regulated on activation normal T cell expressed and secreted), and interferon-beta and the up-regulation of the major adhesion molecule ICAM-1.

PMID:
15579900
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk