Display Settings:

Format

Send to:

Choose Destination
Comb Chem High Throughput Screen. 2004 Nov;7(7):669-76.

Mapping chemical space using molecular descriptors and chemical genetics: deacetylase inhibitors.

Author information

  • 1The Eli and Edythe L. Broad Institute, Massachusetts Institute of Technology and Harvard University, 320 Charles Street, Cambridge, MA 02141, USA. haggarty@fas.harvard.edu

Abstract

An objective of chemical genetics is to understand the relationships between the structures of small molecules and their phenotypic effects in intact living systems. We present here the results of a global analysis of a molecular descriptor space constructed using structural descriptors of an aryl 1,3-dioxane-based diversity-oriented synthesis-derived library containing structural biasing elements directed at inhibiting protein deacetylases. Using principal component analysis and three-dimensional visualization, we generated metric space maps with morphological features contributed by different diversity elements within the library. Filtering these maps using phenotypic descriptors derived from measurements of small-molecule activities in an array of cell-based assays revealed different densities of biological activity within specific subspaces. These results provide evidence that certain structural features may be important for conferring potency and selectivity on deacetylase inhibitors with respect to tubulin and histone acetylation. Moreover, these results highlight an example of the importance of using functional measures to assess molecular diversity. Similar analyses of other chemical spaces and activity classes promise to facilitate the development of chemical genetics.

PMID:
15578929
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Bentham Science Publishers Ltd.
    Loading ...
    Write to the Help Desk