Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Colloid Interface Sci. 2005 Feb 1;282(1):11-9.

Synthesis and characterization of iron oxide-coated silica and its effect on metal adsorption.

Author information

  • 1Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA. yx3@njit.edu

Abstract

To accurately model metal mobility and bioavailability in soils and sediments, systematic adsorption studies are needed in considering heterogeneous, well characterized minerals. Two important surfaces are iron oxide and silica, which are ubiquitous and associated with one another in the environment playing important roles in metal distribution. This study focuses on the synthesis and characterization of such a system, iron oxide-coated silica. A three-level fractional factorial study was used to determine the optimum conditions for producing goethite-coated silica. The amount of coating achieved was between 0.59 and 21.36 mg Fe g(-1) solid. The most significant factor in coating using either adsorption or precipitation was the particle size of silica, where Fe increased from an average of 0.85 to 9.6 mg Fe g(-1) solid as silica size decreased from 1.5 to 0.2 mm. Other factors investigated, including coating temperature, initial iron concentration, and contact time, were of less importance. The iron oxide coatings were observed to be non-uniform, concentrated in rough concave areas. FTIR revealed a band shift as well as a new band indicating changes in the chemical environment of FeO and SiO bonds; these results along with abrasion studies suggest that the interaction between the oxide coating and silica surface potentially involves chemical forces. Because the nano-sized iron oxide coatings increased surface area, introduced small pores, and changed the surface charge distribution of silica, the coated system demonstrates a greater affinity for Ni compared to that of uncoated silica.

PMID:
15576075
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk