Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Gene Ther. 2004 Dec;11(24):1742-52.

Neuronal expression of the transcription factor Gli1 using the Talpha1 alpha-tubulin promoter is neuroprotective in an experimental model of Parkinson's disease.

Author information

  • 1Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.


Nigrostriatal neurons degenerate during Parkinson's disease. Experimentally, neurotoxins such as 6-hydroxydopamine (6-OHDA) in rodents, and MPTP in mice and non-human primates, are used to model the disease-induced degeneration of midbrain dopaminergic neurons. Glial-cell-derived neurotrophic factor (GDNF) is a very powerful neuroprotector of dopaminergic neurons in all species examined. However, recent reports have indicated the possibility that GDNF may, in the long term and if expressed in an unregulated manner, exert untoward effects on midbrain dopaminergic neuronal structure and function. Although GDNF remains a powerful neurotrophin, the search for alternative therapies based on alternative and complementary mechanisms of action to GDNF is warranted. Recently, recombinant adenovirus-derived vectors encoding the differentiation factor Sonic Hedgehog (Shh) and its downstream transcriptional activator (Gli1) were shown to protect dopaminergic neurons in the substantia nigra pars compacta from 6-OHDA-induced neurotoxicity in rats in vivo. A pancellular human CMV (hCMV) promoter was used to drive the expression of both Shh and Gli1. Since Gli1 is a transcription factor and therefore exerts its actions intracellularly, we decided to test whether expression of Gli1 within neurons would be effective for neuroprotection. We demonstrate that neuronal-specific expression of Gli1 using the neuron-specific Talpha1 alpha-tubulin (Talpha1) promoter was neuroprotective, and its efficiency was comparable to the pancellular strong viral hCMV promoter. These results suggest that expression of the transcription factor Gli1 solely within neurons is neuroprotective for dopaminergic neurons in vivo and, furthermore, that neuronal-specific promoters are effective within the context of adenovirus-mediated gene therapy-induced neuroprotection of dopaminergic midbrain neurons. Since cell-type specific promoters are known to be weaker than the viral hCMV promoter, our data demonstrate that neuronal-specific expression of transcription factors is an effective, specific, and sufficient targeted approach for neurological gene therapy applications, potentially minimizing side effects due to unrestricted promiscuous gene expression within target tissues.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk