Format

Send to

Choose Destination
See comment in PubMed Commons below
Genes Immun. 2004 Dec;5(8):621-30.

IL-10 stimulatory effects on human NK cells explored by gene profile analysis.

Author information

  • 1Department of Oncological and Surgical Sciences, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy. mocellins@hotmail.com

Abstract

The molecular mechanisms underlying the increase of natural killer (NK) cell anticancer activity mediated by interleukin (IL)-10 have not been elucidated. The aim of this study was to identify potential molecular mediators of IL-10 stimulatory effects by exploring the NK cell gene display induced by this cytokine. Gene profile was determined by high-throughput cDNA microarray and quantitative real-time PCR. In vitro, NK cells resting or conditioned with IL-10 were tested for cytotoxicity, migration and proliferation. IL-10 enhanced mRNA levels of cell activation/cytotoxicity-related genes (eg secretogranin, TIA-1, HMG-1, interferon-inducible genes) not upregulated by IL-2. In line with these findings, IL-10 increased NK cell in vitro cytotoxicity against Daudi cells. Unlike IL-2, IL-10 did not show any significant effect on NK cell in vitro proliferation and migration. However, gene profile analysis showed that IL-10 increased the expression of cell migration-related genes (eg L-selectin, vascular endothelium growth factor receptor-1, plasminogen activator, tissue; formyl peptide receptor, lipoxin A4 receptor), which might support a stimulatory effect not evident with the in vitro functional assay. Overall, gene profiling allowed us to formulate new hypotheses regarding the molecular pathways underlying the stimulatory effects of IL-10 on NK cells, supporting further investigation aimed at defining its role in cancer immune rejection.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk