Display Settings:

Format

Send to:

Choose Destination
Anesth Analg. 2004 Dec;99(6):1715-22, table of contents.

Potent activation of the human tandem pore domain K channel TRESK with clinical concentrations of volatile anesthetics.

Author information

  • 1Department of Anesthesia and Perioperative Care, 513 Parnassus Ave., Room S-261, Box 0542, San Francisco, CA 94143, USA.

Abstract

The tandem pore domain K channel family mediates background K currents present in excitable cells. Currents passed by certain members of the family are enhanced by volatile anesthetics, thus suggesting a novel mechanism of anesthesia. The newest member of the family, termed TRESK (TWIK [tandem pore domain weak inward rectifying channel]-related spinal cord K channel), has not been studied for anesthetic sensitivity. We isolated the coding sequence for TRESK from human spinal cord RNA and functionally expressed it in Xenopus oocytes and transfected COS-7 cells. With both whole-cell voltage-clamp and patch-clamp recording, TRESK currents increased up to three-fold by clinical concentrations of isoflurane, halothane, sevoflurane, and desflurane. Nonanesthetics (nonimmobilizers) had no effect on TRESK. Various IV anesthetics, including etomidate, thiopental, and propofol, have a minimal effect on TRESK currents. Amide and ester local anesthetics inhibit TRESK in a concentration-dependent manner but at concentrations generally larger than those that inhibit other tandem pore domain K channels. We also determined that TRESK is found not only in spinal cord, but also in human brain RNA. These results identify TRESK as a target of volatile anesthetics and suggest a role for this background K channel in mediating the effects of inhaled anesthetics in the central nervous system.

PMID:
15562060
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Write to the Help Desk